Learning Effective Binary Visual Representations with Deep Networks
نویسندگان
چکیده
Although traditionally binary visual representations are mainly designed to reduce computational and storage costs in the image retrieval research, this paper argues that binary visual representations can be applied to large scale recognition and detection problems in addition to hashing in retrieval. Furthermore, the binary nature may make it generalize better than its real-valued counterparts. Existing binary hashing methods are either two-stage or hinging on loss term regularization or saturated functions, hence converge slowly and only emit soft binary values. This paper proposes Approximately Binary Clamping (ABC), which is non-saturating, end-to-end trainable, with fast convergence and can output true binary visual representations. ABC achieves comparable accuracy in ImageNet classification as its real-valued counterpart, and even generalizes better in object detection. On benchmark image retrieval datasets, ABC also outperforms existing hashing methods.
منابع مشابه
Deep Learning of Orthographic Representations in Baboons
What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the primate's ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words from nonwords. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the baboons in the experiment, and learned to map r...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملCompact Hash Code Learning with Binary Deep Neural Network
In this work, we firstly propose deep network models and learning algorithms for learning binary hash codes given image representations under both unsupervised and supervised manners. Then, by leveraging the powerful capacity of convolutional neural networks, we propose an end-to-end architecture which jointly learns to extract visual features and produce binary hash codes. Our novel network de...
متن کاملProbabilistic Siamese Network for Learning Representations
Probabilistic Siamese Network for Learning Representations Chen Liu Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto 2013 We explore the training of deep neural networks to produce vector representations using weakly labelled information in the form of binary similarity labels for pairs of training images. Previous methods such as siames...
متن کاملCombining Fisher Vector and Convolutional Neural Networks for Image Retrieval
Fisher Vector (FV) and deep Convolutional Neural Network (CNN) are two popular approaches for extracting effective image representations. FV aggregates local information (e.g., SIFT) and have been state-of-the-art before the recent success of deep learning approaches. Recently, combination of FV and CNN has been investigated. However, only the aggregation of SIFT has been tested. In this work, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018